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On the Normal Convergence of a Class
of Simple Batch Epidemics

by

Naftali A. Langberg

ABSTRACT

A group of n susceptible individuals exposed to a contagious

disease is considered. It is assumed that at each instant in

time one or more susceptible individuals can contract the disease.

The progress of this epidemic is modeled by a stochastic

process Y n(t), t in [0, -) representing the number of infective

idividuals at time t. It is shown that X (t), with the suitablen

standardization and under a mild condition, converges in distribution

as n - - to a normal random variable for all t in (0, t0 ), where

t is an identifiable number.

Key words: Simple batch epidemics, weak convergence, convergence

in distribution, normal distributions, Brownian motion, and the

Berry-Esseen bound.
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I. Introduction and Summary.

We consider a population of susceptible individuals (susceptibles) exposed

to contagious disease (disease). We say that the population of susceptibles

undergoes a simple epidemic if the following three assumptions hold. [Bailey

(1975)].

(1.1) Once a susceptible contracts the disease he remains contagious

during the duration of the epidemic.

(1.2) Individuals neither join nor do they depart from the population, and

(1.3) At each point in time at most one susceptible contracts the disease.

It is quite conceivable that when an infective individual (infective)

interacts with a group of susceptibles one or more of them contract the disease.

In the paper we consider such a situation. We say that a population of 3uscepti-

bles, exposed to a disease, undergoes a simple batch epidemic if Assumptions

(1.1) and (1.2) hold and if the following holds:

(1.4) At each point in time one or more susceptibles can contract the

disease.

Let denote by T0 the time the first group of susceptibles contracts

the disease, and let n be the number of susceptibles at TO . We describe the

progress of the simple batch epidemic among the susceptibles by a stochastic

process X (t), t in (0, -) representing the number of infectives at timen

t measured from T0 . In Section 2 we construct a variety of stochastic processes

that model the progress of simple batch epidemics. However, in the sequel

we restrict our analysis to a special class of simple batch epidemics. The

stochastic processes corresponding to this class of simple batch epidemics

are presented in the last paragraph of Section 2. Thisclass of simple batch

epidemics generalizes models used and motivated by Severo (1969) to describe

simple epidemic situations.
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Billard, Lacayo and Langberg (1980) consider a different class of simple

batch epidemics. They prove, for this class, that the number of infectives

at time t: X n(t), t in [0, -) converges in distribution as n * - to an identifi-

able discrete random variable (rv) for all t in [0, -). In Section 4 we consider

the class of simlple batch epidemics defined in the last paragraph of Section 2.

We assume that

(1.5) lim(n- Ix (0) - A) n = A, where A is in [O, -) and A is in ( a),
n.- n

and prove that X (t), with the suitable standartization, converges in distribu-n

tion as n - - to a normal rv for all t in (0, t ) and identify tO .

In Section 3 we present some key lemmas used later in the proof of our

main result given in Section 4. Throughout we define a sum over an empty

set of indiciesas zero, and denote by L(n), n = 1, 2, .... a sequence of

integers assuming for almost all n values in the set {l, ... , n1 respectively.

,.-- . .... . ~ ~ --------- ~.-- . . . . "L7 "" I
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2. Nodel Construction

In this section we construct stochastic processes that describe the

progress of simple batch epidemics among the susceptibles. We need some notation.

Let Z1, Zi, ... , be a sequence of i.i.d rv's assuming values in the

2 kset {, 2, ... }, let EZ1 = _n, and let Var Z1  Let Dk = Eq=1 Z q, and let

r(k) = min{q: D > k, q = 0, ... , k) for all k in {0, 1, ...). Further, let

UU 2 ... , bean i.i.d sequence of nonnegative rv's ind,.pendent of the sequence
Z1 2 ,ltE1 I,1t a U 62

Zi, Z ... I let EU 1, let Var U, _ , and let us assume that EU < .

Finally, let Tnk, k = 1, ... , T(n) be the kth interinfection time defined

th thas the time that elapses between the (k - 1)- and the k-h change in the

number of infectives, let S = n(k), k = 0, ..., n, let Snn+i

and let i(n, q), q = Xn (0), ... , Xn (0) + n - 1, be positive real numbers.

We are ready now to construct the desired stochastic processes. Let

k = 0,...,n and let t be in [0, -). Thcn the following event equality holds.

(2.1) (x n(t) - Xn (0) = k) = (S n, k < t < Sn,k+l).

Thus, for all ti, ... , te in (0, -) and all e in (1, 2, ...} the distribution

function of the random vector (X n(t ), ..., X n(t e)} is determined by Equation

(2.1). Consequently, to construct the process X (t), t in [0, -) it suffices

to determine the distribution function of the random vector {r(n), T 1n,1

T ). To determine the distribution function of this random vector itin,o(n)}. to desen the distribution function of th condom ranom
is enough to present the distribution function of the conditional random
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vector (T n,, T n,(n)}Ir(n). We assume throughout that

(2.2) the two conditional random vectors (Tn, ... , T n,(n)tIT(n) and

{((n, X n(O)).UI, p(n, Xn(0) + D1 )U2, .... ;(n, Xn(O) + D T(n)_ )U (n)IT(n)

are equal in distribution for n = 1, 2,....

Let U1 be an exponential random variable. Then the differential equations

associated with the corresponding simple batch epidemics have a relative

simple form. Although these differential equations are not used in the paper

we present them for the sake of completeness.

Proposition 2.1. Let P (t) = P{X n(t) - X (0) = q), q = 0, ..., n,

t in [0, -). Let us assume that U1 is an exponential rv. Then for all t in [0, )

-p-(n,b n)P n,o(t) k=0

dP nk(t) k-1 I
(2.3) dt -p-(n,b +k)P (t)+ I - (n,b +q)P (t)P(Z =k-q} O<k<n

d t n n,k q n n,q 1q=o

n-i 1
1 p- (n,b n+q)P n,q(t)P(Z >n-q} k=n.

q=o

Finally, we present the class of stochastic process corresponding to

the simple batch epidemics that are the subject of our analysis. Let

p(n, q), q = X n(O), ..., Xn (0) + n - 1, be positive real numbers given by:

(2.4) w(n, q) = Aq-(n + Xn(0) - q)-Ona+B-1.

We assume thatA,saeei (0',) and that the range of B depends on the value

of A in Condition (1.5) as follows: for X > 00 is In (0,m) and for X = 0S is in

(0, 1/3). In the sequel we adress ourselves to simple batch epidemics defined

by Equations (2.1), (2.2) and (2.4).

-t



3. Preliminaries.

-1
m z

Let f(z, a) f (1-mp)- a(X + mp) 4 adp for z in [O, 1) and for a in
0

[0, -), let J(L(n), a) n a(a+B-1)jT(L(n))(n -D )-a<Xn(O) + )-Ba,

q=l q-1

n = 1, 2, ... , a in [0, ) and let l]* be the largest integer less than

or equal to y, y in (-=, t). Further, let W n(p) = (D[np] - mpn)n - ,

n = 1, 2, ... , p in [0, 1], let denote by W(p), p in [0, 1] a normalized

Brownian motion [Breiman (1968), p. 257], and let I denote the indicator

function. Throughout we assume that

(3.1) lim(n- L(n) - z)/n = v, where z is in (0, 1) and v is in , *).

In this section we present three key lemmas. We need these lemmas in

the next section in order to obtain our main result. First, we show that

the process W L(n),l(p) = (n 1r(L(n)) -zm-) n + oWn(p), n = 1, 2, .... p in [r, I)

converges weakly as n * to the process W1 (p) = m-1{v - oW(m- z)} + oW(p),

p in [0, 1]. Next, we show that n a-J(L(n),a) converges in probability as

n - - to f(z, a). Finally, we show that {J(L(n), 1) - f(z, 1)1n converges

in distribution as n * to m- {v - oW(zm- )(l - z)- (A + z)-

-1zm

641(0 > O)f(z, 1) + o/ W(p)(1 - mp)-O(x + mp)-{ci(l - mp) - B(1 + mp) }dp.
0

Without loss of generality we can assume that

(3.2) the process W(p) has continuous sample paths [Breiman (1968), p. 259],

and that

(3.3) the rv Sup lWn(p) - ow(p)l converges in probability as n " - to zero.
O.pi l "...

(Brieman (1968), p. 280)

We are ready now to establish the weak convergence of the process W L(n),l(p).

R~),



-6-

Tem-a 3.1. Let .s assume that Condition (3.1) holds. Then WL(n),l(p)

converges weakly as n - - to Wl(p).

Proof. By Statement (3.2) the process W1(p) has continuous sample

paths. Further for all 0 < pl p - P2 
< 1

E(W L(n),l ( p ) - WL(n ) , l ( p l )) 2 (WL(n),l(p2) _ WL(n ) ,l(p)) 2

- E(Wn(p) - W n(pl)) 2 (Wn(P2) - Wn(p)) 2 _< 42 (p 2 - pl) 2

[Billingsley (1968), p. 138, (16.4)] Thus, to prove the result of the

lemma it suffices to show that:

(3.4) the random vector {W L(n),l( ... , W L(n),l(Pe) converges in

distribution as n -- to the random vector {W1(pl), ... , W(pe)I for all

Pl' "' Pe in [0, 1] and for all e in (1, 2, ... ) [Billingsley (1968), p. 128]

Next, to prove Statement (3.4) it is enough to show that:

(3.5) the random vector {(n-T(L(n)) - m-1 z), W(P), ... , W(pe)}

converges in distribution as n -= to the random vector

(m71(v- OW(zm-)), JW(pl), ... , cW(pe)} for all pI, "' Pe in [0, 1]

and all e in {, 2, ... ) by the Carmer-Wald device [Billingsley (1968), p. 49].

Finally, we prove Statement (3.5). Let x, x1l, .. , xe be in (-, -),

let Pl, "' Pe be in [0, 1], and let H [xnh + zm-ln. We note that

P((n- T(L(n)) - m- z) n < x, Wn(pr)_< Xr r - 1, ... , e} W

a P{DH a L(n), W (Pr) xr , r - 1, ... , e), and that by Condition

?3.1) MJI(L(n) - mH)n "4 . v- mx. Since,

Var{n-(D - muH - Dn-1 + nz)} -0 we conclude that

14..- {1-lz)n < x. W (p r ) _X , r -1, . e.., e -
- - n r -r

AN P{Wn(zm l) _ v- rx, Wn(pr)( < , r I,..., e).

_ _ _ _ _ _ _ _ _ _ 1III
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Consequently Statement (3.5) follows by Statement (3.3) and a well known

result [Billingsley (1968), p.25, Th. 4.1.1. II

In particular we obtain from Lemma 3.1

Corollary 3.2. Let us assume that Condition (3.1) holds. Then
-1) (nI(~) -1 -1--

(a) (n- 1(L(n)) - m 1z)in converges in distribution as n - - to m- {v - cW(zm- )}

and (b) n- T(L(n)) converges in probability as n # - to m- z.

For the sake of completeness we note that n T(L(n)) converges with probability

1 as n . to mr z provided lim n L(n) = z in (0, i].
na-i

Now, we establish the convergence of n a-J(L(n), a) to f(z, a) . We

-- 1

need some notation and one simple result. Let I (p) = I(p < n-l(~))
n

and let V (p) = n 'W (p), n = 1, 2 ... , p in [0, I]. Since, J(L(n), a) =

na(al+8-1) T( L (n ) )  a $

( n-D )-aDx)ad

n I (n-D a (Xn(0) + D) d we obtain by the substitution
n

x = np that

(3.6) n a-J(L(n), a) =

n-lt(L(n))
- 1 (1 - mp - V (p))- a(n- x (0) + mp + Vn(p))-adp.I n n

We are ready now to establish the convergence of n a-J(L(n), a).

Lemma 3.3. Let us assume that Conditions (1.5) and (3.1) hold. Then

n J(L(n), a) converges in probability as n + - to f(z, a)for all a in [0, 31.

Proof. First we note that for all p in (0, n- T(L(n)))and almost all

n in (1, 2, .

(3.7) 2 > 2 - p > 1 - mp - Vn(p) > (1 - z)/2, and

(3.8) 2(A + z) > n- Xn(0) + mp + Vn(p) > A/2 + p.

- - - . T-•- "-w- U II = u ,. . . . - -.. .I



by Statement (i.3) V (p) converges in probability as n * to zero for all

n
Sin Ec, 1]. i~y Corollary 3.2 (b) In(p) converges with probability 1 as

n * to I(p < m z) on [0, I - {m-l z. Further, for almost all n J(L(n), a) =
1

/In(p)( - Mp- Vn (p)) (n-Xn(0) + p + V n(p))- dp. Consequently the result
0

of the lemmas follows by the dominated convergence theorem [Lolve (1963),

p. 125]. I

We note that Lemma 3.3 remains valid if Condition (3.1) is replaced by the

weaker condition that lim n- L(n) = z 4n (0, 1).

From Inequalities (3.7) and (3.8) we conclude that for almost all n in

{ 1, 2, ... }

-1

39) a-i(L a) (1 -a an1 T(L(n)) a
(3.9) n L(n), a) < z)-2a/ (X/2 +p)- dp, and that

0

(3.10) na-I J(L(n), a) > 2 -a(a+B)(x + z)- an-1 ((n)).

We use the last two inequalities in Section 4.

Finally we establish the convergence in distribution of {J(L(n), 1)

- f(z, l)}/-n as n - -.

Lemma 3.4. Let us assume that Conditions (1.5) and (3.1) hold. Then

{J(L(n), 1) - f(z, )}v/n converges in distribution as n to
-1{ m-1 -8

M v - oW(m 1z)}(l - z)-(X + z) - 8AI(x > O)f(z, 1) +

+ W(p)(l - mp)- (x + mp) -aa(1 - Mp) - I - 8(X + mp)ldp.
0 -1

n T(L(n)) -0 1 -6
Proof. Let R L(n)1(z) = (1 - mp) (n X n(0) + mp) dp

-1 0 -1
m Z -a -l -Bn 18

- 1 (1 - mp) (n-I Xn(0) + Irp)- dp, let P n,2(z) (1-mp)-(n- X n(O) + mp)
on, 0 x

- n- T(L(n))

- (1- mp) (+ np) dr, andlet L(n) () f (1- mp - V (p)

0. 0
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n-1 T(L(n))
(n-Xn(O) +mpf+ (p))dp-f (1 - mp) (n Xn(O) + mp) dp,

0

S"1, 2, ..., z in (0, 1)

We note that

(3.11) J(L(n), 1) - f(z, 1) - RL(n),1(z) + Rn 2 (z).+ RL(n ) , 3(z)

Further, let n (p) be a point in the interval generated by 0 and V (p),U n

n - 1, 2, ..., p in [O, 1'. Finally, let n, v be points in the inter-

vals generated by n- T(L(n)), m-lz and by 0 and n-Xn (0) - X respectively,

n - 1, 2,....

By the mean value theorem we conclude that

(3.12) RL(n),l(z) - (n-lT(L(n)) - m-lz)(l - m n)-a(n- X (0) + mn)-8,

n,2 n
-1

(3.13) R U,2 (z) -O(n-lx n(0) - X)f Z(I - mp)'-10(V n + mp)-o-Idp, and that

0

n -T(L(n)) a -
(3.14) A .z) f (1 - mp - on(p))- (n_ x(0) + np + en(p))-0

{n(1 - mp - %(p)) -1 - (n-lx (0) + mp + n(p))-l)dp.

To prove the result of the lemma it suffices to show that

Mi) rUL(n),i converges in distribution to m-l{v - aW(m-lz)), that

(ii) V-Rn,2 converges to -OtI(A > O)f(z, 1) and that

-1m z -
((iii) &Ick convergei in probability to of W(p) (I - mp)-O(x + p) -

1,3 -.

(4(1 - mp)-1 - 0( + p)' }dp.

First, we note that (i) follows by Condition 3.1, by Corollary

3.2 md by Statement (3.12).

___
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Next, we verify (ii). For all p in (0, =-I z)

(I - mp)-a(x + mp + Vn)- < (1 - z)- (X + mp + V n ) - . Thus, by Vitalis

theorem [Loave (1963), p. 162j and Condition (1.5) (ii) holds for A > 0.

Let us assume that X - 0. Then

-1 -1
0 1n-x(0)1 (1 - mp)- 0 (mp + V )- 8 dp < (I - z) -cn-lX (o)f (mp + Vn)-dp.

0 n - n 0

Thus, (ii) follows ior the case X - 0 by a simple limit argument.

Finally, we verify (iii). By considering the cases V n(p) > 0 and

Vn(p) < 0 one can show that for all p in (0, n-l T(L(n))) and almost all.

n in {I, 2, ...1

1 - mp> 1 - mp - On(p) > min{l - mp, (1 - z)/2), and that

4A + 2zfnp > n-iXn(0) +mp + On(p) > (m + l)p.
1Further for almost all n n3 In(P)(l - mp --

-l~), -8 ~ ~ )l- p-O~)

(n-l X n(0) + mp + 0n (p))- {a(l - mp + On (p))- 1 - 0(n- 1 X (0) + mp + en (p))-l)dp.

Thus, by Vitalis theorem, by Statement (3.3), and by the convergence

with probability 1 of In (p) (iii) follows. IJ

j . 1, am 
' -

. . ..... -- - - . -_ -, - -- -- - . - .. . . . . . .



4. iain Result.

Let t - Af(l,l), let g(t), t in [0, t ) be the inverse function of0 0

Af(z,l), and let h(p) - (1 - mp)-Q(A + mp)-a {(l - mp) -I - B(A + mp)-1,

p in (0, 1). Further, let Q(t), t in (0, t ) be a normal rv such that

EQ(t) - AI - BmI(A > O)f(g(t),1)1 and that Var Q(t) m 262 f(g(t),2) +

+ 02m-1 =(t)(1 - g(t)) - 2a (A + g(t))
-20

-2a 2m(l - g(t)) -" (x + g(t)) -a fm- g(t)ph(p)dp + 2a2 m 2 fm-l g (t ) f' uh(u)h(p) du dp.

Finally, let 0 be the distribution function of a standard normal rv, and let

B(L(n),x) - (A- x - J(L(n),l))5- J-/2 (L(n),2), n - 1, 2, ..., x in (-a,-).

In this section we present our main result. We prove that

(n X n(t) - g(t) - A)n converges in distribution as n - - to the normal rv Q(t)

for all t in (0, to) provided Condition (1.5) holds. We need the following lemma.

Lemma 4.1. Let us assume that Condition (1.5) holds. Then

(4.1) Zim Sup IP{S n,L(n)x} - EO(B(L(n),x)}J - 0.

Proof. Let 0 < e < min{m-lz,m-l(l - z)}, and let In,2(-)

I(In 1T(L(n)) - m-lzse), n - 1, 2,

We note that for all x in (-,-)

JE(I(Sn,L(n) X) - *{B(L(n),x)))(I - I

5 2P{ In - (L(n)) - m-1z 20kd.

Thus, to prove Statement (4.1) it suffices by Corollary 3.2(b) to show that

(4.2) Uim Sup IE(I(Sn,L(n)Sx) - *{B(L(n) ,x)})I n,2 (1) a 0.
n-"* -<x~Cm

We proceed to prove Statement (4.2). Let 8 be the a-field generated by

Z l Z2, .... Then the conditional rv's T.,I , ..., Tn,(n)I1 are independent.
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Thus, by the Berry-Esseen bouii [Lobve (1963), p. 288] we obtain that

Sup IP{SnL(n) <xB} - *{B(L(n),x)}j <
-D<X<co

5n-1/2C6-3EjU_1 -113 (n2j (L(n),3))(nJ(L(n) 2))-3 2 , where

C is a positive constant.

Thus, to prove Statement (4.2) it is enough to show that

(4.3) tim n-1/2 E(n2 J(L(n),3)) (nJ(L(n) ,2))312( ) - 0.

Finally, we prove Statement (4.3). By Inequalities (3.9) and (3.10) we

conclude that for almost all in 0i, 2, ...

(n 2j(L(n),3))(nJ(L(n),2))-3/2I n,2(-) <

(I-z)-3a2a+30(A + z)30 (m-z - )3/2 fm- z+e(A/2+p) -3dp.
0

Consequently Statement (4.3) follows. II

We note that Lemma 4.1 remains valid if Condition (3.1) is replaced by the

weaker condition that tim n- L(n) - z in (0, 1).

n-'-l

We are ready now to show that (n- X n(t)-g(t)-A))Aconverges in distribution

as n * c to Q(t) for all t in (0, to).

Theorem 4.2. Let us assume that Condition (1.5) holds. Then

{n-lXn(t) - g(t) - A)Vn' converges in distribution as n - to Q(t) for all

t in (0, to).

Proof. First, we note that n- X n(t) - g(t) - A -

{n(X n(t) - Xn(O)) - g(t)} + {n1Xn (0) - X1. Thus, to prove the result of

the theorem it suffices by Condition (1.5) to show that

-1
(n' (Xn (t)-Xn(O)) - g(t)}/n converges in distribution as n * to Q(t) - for

all t in (0, to).
0
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We proceed to prove the convergence of n-l (X n(t) - Xn (0)) - g(t)}/nA.

let v b'u i (- ,c), l let L(u) = Lvn1/2 + g(t)n_. Then

P{(n-l{Xn(t) - X n(0))- g(t))/n > v) - P{Sn,L(n) < t - P{S n,L(n) Af(g(t),l)}.

Further, we note that L(n) satisfy Condition (3.1) with z - g(t) in (0,I). T;:us

to prove the result of the theorem it is enough by Lemma 4.1 to show that

(4.4) tira E {B(L(n),Af(g(t),I)} = P{Q(t)-A>v),
n-ow

Finally, we prove Statement (4.4). Let V be a standard normal rv indepen-

dent of Z, Z2, ..., and of U1, U2, ... . Then EO{B(L(n),Af(g(t),l))} =

P{VC6"l(f(g(t),l)-J(L(n),1))J 1 /2(L(n),2)}. To prove Statement (4.4) it is

enough to show by Lemma 3.3 that

(4.5) Lim P{Vf 1/2(g(t),2) < (f(g(t),l) - J(L(n),l))n)
n-*w

= P{Q(t) ->v}.

By Lemma 3.4 and by the independence of V and Wn(p) for all n in (1, 2, *..)

and for all p in [0,1) we obtain that V6fl/2(g(t),2) + (J(L(n),l)-f(g(t),l))Ai

converges in distribution as n - -to the rv1/2 -1 -l -~ +m-lg(t)

V6f1/2(g(t),2) - m- oW(m' g(t))(l - g(t)) +(t)) " + a f W(p)h(p)dp -

- 1 
0

- 86A(A>O)f(g(t),l) + m v. Consequently the result of the theorem follows by

the linearity property of multivariate normal distributions. II

P,-
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